Lecture 5a

Part C

Binary Trees
Definition, Terminology, Properties
(continued)

BT Properties: Relating #s of Ext. and Int. Nodes

Given a *binary tree* that is:

- nonempty and proper
- with n_i internal nodes and n_F external nodes

We can then expect that: $|\mathbf{n_E}| = |\mathbf{n_I}| + 1$

$$n_E = n_I + 1$$

Induction on Size of Proper BT

no internal node

= "proper" property is satisfied

(without violation witnes)

MI = 5 MI = 6 Inductive Recursive Case NE = 6 NE = Inductive A

Lecture 5a Part D Binary Trees Applications

Applications of General Trees: Assurance Cases

Source: https://resources.sei.cmu.edu/asset_files/whitepaper/2009_019_001_29066.pdf

Q. Is the binary tree necessarily proper?

Lecture 5a

Part E

Tree Traversals Pre-Order, In-Order, Post-Order

General Tree Traversals: Pre-Order vs. Post-Order

Pre-Order Traversal from the Root

Povent, re-order (oldd nodes)

Varia Evalsto his Elsa still Vantra Peter Anna

Post-Order Traversal from the Root

Post-order (child modes), Pavent

In Icaeso Kee Hsa Ama Chri

TRAVEL THE WORLD

Pre-Order Traversal

In-Order Traversal

Post-Order Traversal

31+3875-201374-864-

Lecture 5b

Part A

Binary Search Tree -Definition and Property

Binary Search Trees: Sorting Property

- BST: Non-Linear Structure
- In-Order Traversal

17-order of RST 2932 241 5465 7680 8288 93

m-order on US

